Hypothesis Triblock copolymers of poly(ethylene oxide) and poly(propylene oxide)-based matrices, such as Poloxamer 407 (P407) or Pluronic® F127, are extensively utilized in drug delivery and permeation systems due to their FDA approval and listing in the US and European Pharmacopoeias. The study hypothesizes that incorporating 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and the celecoxib-HP-β-CD inclusion complex into a 16 wt% P407 and chitosan blend in an aqueous acetic acid solution will affect the system's rheological and structural properties. Experiments Rheological, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) experiments were conducted to assess the impact of acetic acid and chitosan on the 16 wt% P407 and chitosan blend. Additionally, in vitro drug release studies were performed to monitor the drug release profile over time. Findings The addition of HP-β-CD was found to inhibit gel formation in the 16 wt% P407 and chitosan blend. However, the presence of the celecoxib-HP-β-CD inclusion complex showed no significant structural effects compared to P407 blended with chitosan alone. Rheological and SAXS analyses demonstrated that acetic acid led to the formation of a lamellar phase due to the lower pH, facilitating injectability. The presence of chitosan in acetic acid resulted in the detection of a hexagonal phase, affecting the release of celecoxib.

Celecoxib-hydroxypropyl-β-cyclodextrin inclusion complex in a chitosan/PEO-PPO-PEO block copolymer matrix: Structural effect and drug release

Valentino Laquintana;Angela Lopedota;Marianna Ivone;Nunzio Denora;Massimo Franco;Gerardo Palazzo;Luigi Gentile
2024-01-01

Abstract

Hypothesis Triblock copolymers of poly(ethylene oxide) and poly(propylene oxide)-based matrices, such as Poloxamer 407 (P407) or Pluronic® F127, are extensively utilized in drug delivery and permeation systems due to their FDA approval and listing in the US and European Pharmacopoeias. The study hypothesizes that incorporating 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and the celecoxib-HP-β-CD inclusion complex into a 16 wt% P407 and chitosan blend in an aqueous acetic acid solution will affect the system's rheological and structural properties. Experiments Rheological, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) experiments were conducted to assess the impact of acetic acid and chitosan on the 16 wt% P407 and chitosan blend. Additionally, in vitro drug release studies were performed to monitor the drug release profile over time. Findings The addition of HP-β-CD was found to inhibit gel formation in the 16 wt% P407 and chitosan blend. However, the presence of the celecoxib-HP-β-CD inclusion complex showed no significant structural effects compared to P407 blended with chitosan alone. Rheological and SAXS analyses demonstrated that acetic acid led to the formation of a lamellar phase due to the lower pH, facilitating injectability. The presence of chitosan in acetic acid resulted in the detection of a hexagonal phase, affecting the release of celecoxib.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/456601
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact