In this paper we consider a two component system of coupled non linear Schrödinger equations modeling the phase separation in the binary mixture of Bose–Einstein condensates and other related problems. Assuming the existence of solutions in the limit of large interspecies scattering length β the system reduces to a couple of scalar problems on subdomains of pure phases (Noris et al. in Commun Pure Appl Math 63:267–302, 2010). Here we show that given a solution to the limiting problem under some additional non degeneracy assumptions there exists a family of solutions parametrized by β≫ 1 .
Phase separating solutions for two component systems in general planar domains
Vaira G.
2023-01-01
Abstract
In this paper we consider a two component system of coupled non linear Schrödinger equations modeling the phase separation in the binary mixture of Bose–Einstein condensates and other related problems. Assuming the existence of solutions in the limit of large interspecies scattering length β the system reduces to a couple of scalar problems on subdomains of pure phases (Noris et al. in Commun Pure Appl Math 63:267–302, 2010). Here we show that given a solution to the limiting problem under some additional non degeneracy assumptions there exists a family of solutions parametrized by β≫ 1 .File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.