The COVID-19 pandemic has now spread worldwide, becoming a real global health emergency. The main goal of this work is to present a framework for studying the impact of COVID-19 on Italian territory during the first year of the pandemic. Our study was based on different kinds of health features and lifestyle risk factors and exploited the capabilities of machine learning techniques. Furthermore, we verified through our model how these factors influenced the severity of the pandemics. Using publicly available datasets provided by the Italian Civil Protection, Italian Ministry of Health and Italian National Statistical Institute, we cross-validated the regression performance of a Random Forest model over 21 Italian regions. The robustness of the predictions was assessed by comparison with two other state-of-the-art regression tools. Our results showed that the proposed models reached a good agreement with data. We found that the features strongly associated with the severity of COVID-19 in Italy are the people aged over 65 flu vaccinated (24.6%) together with individual lifestyle behaviors. These findings could shed more light on the clinical and physiological aspects of the disease.

Forecasting Model Based on Lifestyle Risk and Health Factors to Predict COVID-19 Severity

Najada Firza
;
Alfonso Monaco
2022-01-01

Abstract

The COVID-19 pandemic has now spread worldwide, becoming a real global health emergency. The main goal of this work is to present a framework for studying the impact of COVID-19 on Italian territory during the first year of the pandemic. Our study was based on different kinds of health features and lifestyle risk factors and exploited the capabilities of machine learning techniques. Furthermore, we verified through our model how these factors influenced the severity of the pandemics. Using publicly available datasets provided by the Italian Civil Protection, Italian Ministry of Health and Italian National Statistical Institute, we cross-validated the regression performance of a Random Forest model over 21 Italian regions. The robustness of the predictions was assessed by comparison with two other state-of-the-art regression tools. Our results showed that the proposed models reached a good agreement with data. We found that the features strongly associated with the severity of COVID-19 in Italy are the people aged over 65 flu vaccinated (24.6%) together with individual lifestyle behaviors. These findings could shed more light on the clinical and physiological aspects of the disease.
File in questo prodotto:
File Dimensione Formato  
ijerph-19-12538-v2-1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/455595
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact