Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.

The p66Shc Redox Protein and the Emerging Complications of Diabetes

Giuseppina Biondi;Nicola Marrano;Anna Borrelli;Martina Rella;Rossella D’Oria;Valentina Annamaria Genchi;Cristina Caccioppoli;Angelo Cignarelli;Sebastio Perrini;Luigi Laviola;Francesco Giorgino
;
Annalisa Natalicchio
2023-01-01

Abstract

Diabetes mellitus is a chronic metabolic disease, the prevalence of which is constantly increasing worldwide. It is often burdened by disabling comorbidities that reduce the quality and expectancy of life of the affected individuals. The traditional complications of diabetes are generally described as macrovascular complications (e.g., coronary heart disease, peripheral arterial disease, and stroke), and microvascular complications (e.g., diabetic kidney disease, retinopathy, and neuropathy). Recently, due to advances in diabetes management and the increased life expectancy of diabetic patients, a strong correlation between diabetes and other pathological conditions (such as liver diseases, cancer, neurodegenerative diseases, cognitive impairments, and sleep disorders) has emerged. Therefore, these comorbidities have been proposed as emerging complications of diabetes. P66Shc is a redox protein that plays a role in oxidative stress, apoptosis, glucose metabolism, and cellular aging. It can be regulated by various stressful stimuli typical of the diabetic milieu and is involved in various types of organ and tissue damage under diabetic conditions. Although its role in the pathogenesis of diabetes remains controversial, there is strong evidence regarding the involvement of p66Shc in the traditional complications of diabetes. In this review, we will summarize the evidence supporting the role of p66Shc in the pathogenesis of diabetes and its complications, focusing for the first time on the emerging complications of diabetes.
File in questo prodotto:
File Dimensione Formato  
The p66Shc Redox Protein and the Emerging Complications of Diabetes.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 569.65 kB
Formato Adobe PDF
569.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/455420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact