Scientific evidence points to a shared neural representation between performing and observing an action. The action observation notoriously determines a modulation of the observer's sensorimotor system, a phenomenon called Motor Resonance (MR). Fibromyalgia (FM) patients suffer from a condition characterized by generalized musculoskeletal pain in which even simple movement can exacerbate their symptoms. Maladaptive functioning of the primary motor cortex is a common finding in patients with chronic pain. Activation of the motor cortex is known to induce an analgesic effect in patients with chronic pain. In this exploratory study, we intend to verify if the mere observation of a movement could elicit activation of the motor cortical areas in patients with FM. Therefore, the purpose of this study was to examine the presence of MR in patients affected by fibromyalgia. We adopted a behavioral paradigm known for detecting the presence of MR and a neurophysiological experiment. Participants watched videos showing gripping movements towards a graspable or an ungraspable object, respectively, and were asked to press a button the instant the agent touched the object (Time-to-contact detection session). In a different experimental session, participants were only requested to observe and pay attention to the videos (Observation-only session). During each experimental session, the participants' cerebral hemodynamic activity was recorded using the functional Near-Infrared Spectroscopy method. The behavioral task analysis revealed the presence of MR in both FM patients and healthy controls. Moreover, neurophysiological findings suggested that the observation of movement during the Observation-only session provoked activation and modulation of the cortical motor networks of FM patients. These results could represent evidence of the possible beneficial effects of movement observation in restarting motor activation, notoriously reduced, in FM patients.
Movement observation activates motor cortex in fibromyalgia patients: a fNIRS study
Bevilacqua, Vitoantonio;de Tommaso, Marina
2022-01-01
Abstract
Scientific evidence points to a shared neural representation between performing and observing an action. The action observation notoriously determines a modulation of the observer's sensorimotor system, a phenomenon called Motor Resonance (MR). Fibromyalgia (FM) patients suffer from a condition characterized by generalized musculoskeletal pain in which even simple movement can exacerbate their symptoms. Maladaptive functioning of the primary motor cortex is a common finding in patients with chronic pain. Activation of the motor cortex is known to induce an analgesic effect in patients with chronic pain. In this exploratory study, we intend to verify if the mere observation of a movement could elicit activation of the motor cortical areas in patients with FM. Therefore, the purpose of this study was to examine the presence of MR in patients affected by fibromyalgia. We adopted a behavioral paradigm known for detecting the presence of MR and a neurophysiological experiment. Participants watched videos showing gripping movements towards a graspable or an ungraspable object, respectively, and were asked to press a button the instant the agent touched the object (Time-to-contact detection session). In a different experimental session, participants were only requested to observe and pay attention to the videos (Observation-only session). During each experimental session, the participants' cerebral hemodynamic activity was recorded using the functional Near-Infrared Spectroscopy method. The behavioral task analysis revealed the presence of MR in both FM patients and healthy controls. Moreover, neurophysiological findings suggested that the observation of movement during the Observation-only session provoked activation and modulation of the cortical motor networks of FM patients. These results could represent evidence of the possible beneficial effects of movement observation in restarting motor activation, notoriously reduced, in FM patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.