Following a green approach, kiwi peels (a waste) were washed in hot water to obtain a water-based polyphenolic extract (KPWW) used to reduce Au3+ (coming from a HAuCl4 water-based solution) for forming gold nanoparticles (AuNPs). Indeed, KPWW, as shown after performing high-performance liquid chromatography-mass spectrometry (HPLC/MS-MS) analysis, is mainly composed by different polyphenols acting as reductant agents, accomplishing a red-ox reaction and decorating the AuNPs-KPWW surface. Spectroscopic and morphologic techniques were used in synergy for investigating the AuNPs-KPWW main features. Polyhedral-shaped plasmonic nanoparticles with a mean size of 30 & PLUSMN;10 nm and a negative charge of -40 mV were thus obtained. The AuNPs' stability was assessed under different working conditions, investigating the role of ionic strength, pH, and temperature. The photostability was also assessed by irradiating AuNPs-KPWW with a solar simulator lamp. Both temperature and solar light did not perturb AuNPs-KPWW. Thanks to the presence of polyphenols, the antioxidant and skin-lightening properties were positively demonstrated. Moreover, the protective role of AuNPs in scavenging H2O2 and & BULL;OH was also investigated by inhibiting the oxidation of a biomolecule. The sunscreen ability of AuNPs-KPWW was also estimated, and the theoretical calculation of the sun protection factor (SPF) was determined. Finally, the AuNPs-KPWW biocompatibility was tested on endothelial colony-forming cells and normal dermal fibroblasts as human cell lines, revealing that AuNPs-KPWW did not affect cell viability and did not alter cell morphology, demonstrating their safety and their potential application in nanomedicine.

From Kiwi Peels' "End-of-Life" to Gold Nanoparticles: the Upcycling of a Waste

Gubitosa, J
;
Rizzi, V
;
Cosma, P
2023-01-01

Abstract

Following a green approach, kiwi peels (a waste) were washed in hot water to obtain a water-based polyphenolic extract (KPWW) used to reduce Au3+ (coming from a HAuCl4 water-based solution) for forming gold nanoparticles (AuNPs). Indeed, KPWW, as shown after performing high-performance liquid chromatography-mass spectrometry (HPLC/MS-MS) analysis, is mainly composed by different polyphenols acting as reductant agents, accomplishing a red-ox reaction and decorating the AuNPs-KPWW surface. Spectroscopic and morphologic techniques were used in synergy for investigating the AuNPs-KPWW main features. Polyhedral-shaped plasmonic nanoparticles with a mean size of 30 & PLUSMN;10 nm and a negative charge of -40 mV were thus obtained. The AuNPs' stability was assessed under different working conditions, investigating the role of ionic strength, pH, and temperature. The photostability was also assessed by irradiating AuNPs-KPWW with a solar simulator lamp. Both temperature and solar light did not perturb AuNPs-KPWW. Thanks to the presence of polyphenols, the antioxidant and skin-lightening properties were positively demonstrated. Moreover, the protective role of AuNPs in scavenging H2O2 and & BULL;OH was also investigated by inhibiting the oxidation of a biomolecule. The sunscreen ability of AuNPs-KPWW was also estimated, and the theoretical calculation of the sun protection factor (SPF) was determined. Finally, the AuNPs-KPWW biocompatibility was tested on endothelial colony-forming cells and normal dermal fibroblasts as human cell lines, revealing that AuNPs-KPWW did not affect cell viability and did not alter cell morphology, demonstrating their safety and their potential application in nanomedicine.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/453721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact