With respect to the Parkinson's disease (PD), herein, we aimed at synthetizing and characterizing two novel macromolecular conjugates where dopamine (DA) was linked to N,O-carboxymethyl chitosan or O-carboxymethyl chitosan, being both conjugates obtained from an organic solvent free synthetic procedure. They were characterized by FT-IR, 1H NMR spectroscopies, whereas thermal analysis (including Differential Scanning Calorimetry and Thermal Gravimetric Analysis) revealed good stability of the two conjugates after exposure at temperatures close to 300 ◦C. Release studies in simulated nasal fluid elucidated that a faster release occurred since O-carboxymethyl chitosan-DA conjugate maybe due to the less steric hindrance exerted by the polymeric moiety. The CMCS-DA conjugates prepared in aqueous medium may self-assembly to form polymeric micelles and/or may form polymeric nanoparticles. TEM and Photon correlation spectroscopy lent support for polymeric nanoparticle formation. Moreover, such CMCS-DA conjugates showed antioxidant activity, as demonstrated by DPPH radical scavenging assay. Finally, cytocompatibility studies with neuroblastoma SH-SY5Y cells showed no cytotoxicity of both conjugates, whereas their uptake increased from 2.5 to 24 h and demonstrated in 40–66 % of cells.
Carboxymethyl chitosan dopamine conjugates: Synthesis and evaluation for intranasal anti Parkinson therapy
Giuseppe Fracchiolla;Filippo Maria Perna;Andrea Francesca Quivelli;Giuseppe Trapani;Adriana Trapani
;Massimo Conese
2023-01-01
Abstract
With respect to the Parkinson's disease (PD), herein, we aimed at synthetizing and characterizing two novel macromolecular conjugates where dopamine (DA) was linked to N,O-carboxymethyl chitosan or O-carboxymethyl chitosan, being both conjugates obtained from an organic solvent free synthetic procedure. They were characterized by FT-IR, 1H NMR spectroscopies, whereas thermal analysis (including Differential Scanning Calorimetry and Thermal Gravimetric Analysis) revealed good stability of the two conjugates after exposure at temperatures close to 300 ◦C. Release studies in simulated nasal fluid elucidated that a faster release occurred since O-carboxymethyl chitosan-DA conjugate maybe due to the less steric hindrance exerted by the polymeric moiety. The CMCS-DA conjugates prepared in aqueous medium may self-assembly to form polymeric micelles and/or may form polymeric nanoparticles. TEM and Photon correlation spectroscopy lent support for polymeric nanoparticle formation. Moreover, such CMCS-DA conjugates showed antioxidant activity, as demonstrated by DPPH radical scavenging assay. Finally, cytocompatibility studies with neuroblastoma SH-SY5Y cells showed no cytotoxicity of both conjugates, whereas their uptake increased from 2.5 to 24 h and demonstrated in 40–66 % of cells.File | Dimensione | Formato | |
---|---|---|---|
2023 IJBM.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.66 MB
Formato
Adobe PDF
|
5.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
IJBIOMAC-D-23-07156_R2.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
2.45 MB
Formato
Adobe PDF
|
2.45 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.