The theory of functional connections, an analytical framework generalizing interpolation, was extended and applied in the context of fractional-order operators (integrals and derivatives). The extension was performed and presented for univariate functions, with the aim of determining the whole set of functions satisfying some constraints expressed in terms of integrals and derivatives of non-integer order. The objective of these expressions was to solve fractional differential equations or other problems subject to fractional constraints. Although this work focused on the Riemann–Liouville definitions, the method is, however, more general, and it can be applied with different definitions of fractional operators just by changing the way they are computed. Three examples are provided showing, step by step, how to apply this extension for: (1) one constraint in terms of a fractional derivative, (2) three constraints (a function, a fractional derivative, and an integral), and (3) two constraints expressed in terms of linear combinations of fractional derivatives and integrals.

Theory of Functional Connections Extended to Fractional Operators

Garrappa R.;
2023-01-01

Abstract

The theory of functional connections, an analytical framework generalizing interpolation, was extended and applied in the context of fractional-order operators (integrals and derivatives). The extension was performed and presented for univariate functions, with the aim of determining the whole set of functions satisfying some constraints expressed in terms of integrals and derivatives of non-integer order. The objective of these expressions was to solve fractional differential equations or other problems subject to fractional constraints. Although this work focused on the Riemann–Liouville definitions, the method is, however, more general, and it can be applied with different definitions of fractional operators just by changing the way they are computed. Three examples are provided showing, step by step, how to apply this extension for: (1) one constraint in terms of a fractional derivative, (2) three constraints (a function, a fractional derivative, and an integral), and (3) two constraints expressed in terms of linear combinations of fractional derivatives and integrals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/441402
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact