Supervised deep learning has been widely applied in medical imaging to detect multiple sclerosis. However, it is difficult to have perfectly annotated lesions in magnetic resonance images, due to the inherent difficulties with the annotation process performed by human experts. To provide a model that can completely ignore annotations, we propose an unsupervised anomaly detection approach. The method uses a convolutional autoencoder to learn a "normal brain" distribution and detects abnormalities as a deviation from the norm. Experiments conducted with the recently released OASIS-3 dataset and the challenging MSSEG dataset show the feasibility of the proposed method, as very encouraging sensitivity and specificity were achieved in the binary health/disease discrimination. Following the "normal brain" learning rule, the proposed approach can easily generalize to other types of brain diseases, due to its potential to detect arbitrary anomalies.

Unsupervised Brain MRI Anomaly Detection for Multiple Sclerosis Classification

Castellano, Giovanna;Vessio, Gennaro
2023-01-01

Abstract

Supervised deep learning has been widely applied in medical imaging to detect multiple sclerosis. However, it is difficult to have perfectly annotated lesions in magnetic resonance images, due to the inherent difficulties with the annotation process performed by human experts. To provide a model that can completely ignore annotations, we propose an unsupervised anomaly detection approach. The method uses a convolutional autoencoder to learn a "normal brain" distribution and detects abnormalities as a deviation from the norm. Experiments conducted with the recently released OASIS-3 dataset and the challenging MSSEG dataset show the feasibility of the proposed method, as very encouraging sensitivity and specificity were achieved in the binary health/disease discrimination. Following the "normal brain" learning rule, the proposed approach can easily generalize to other types of brain diseases, due to its potential to detect arbitrary anomalies.
2023
978-3-031-37659-7
978-3-031-37660-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/440640
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact