The overuse and misuse of antibiotics can pose the risk of spreading mutant strains that show antimicrobial resistance (AMR), with negative impacts on the management of bacterial infections and economic implications for healthcare systems. The research and development of natural antibacterial agents could be a priority in the next years to improve a number of effective antibacterial molecules and to reduce the AMR phenomenon and its development. The present study identified the most effective concentration and contact time of Thymus vulgaris L. essential oil (TEO) to obtain bactericidal effects in vitro against different Gram-positive and Gram-negative bacterial strains. Six clinically isolated (wild types) bacterial strains, (Citrobacter freundii, Enterococcus feciorum, Proteus mirabilis, Acinetobacter cioffi, Pseudomonas putrefaciens and Klebsiella pneumoniae) and two ATCCs (Staphylococcus aureus and Streptococcus mutans) were tested after 1 min, 3 min and 5 min of contact with TEO. The preliminary results on S. aureus after 24 h of incubation revealed a TEO concentration of 9.28 mg/mL (w/v) that completely inhibited bacteria growth, keeping cell viability. The total suppression of bacterial growth at all tested contact times was observed for all tested bacterial strains, and the results were confirmed after 48 h of incubation. Bacterial growth suppression was confirmed even with the presence of organic components. These preliminary results showed the in vitro antimicrobial efficacy of TEO against different Gram-positive and Gram-negative bacterial strains. Future studies are necessary to confirm the reproducibility of these results even on other strains and to define the exact molecular mechanisms of EOs in order to consider TEO as a valid alternative to classic antibiotic therapies and subsequently to reduce the occurrence of AMR.

Assessing Contact Time and Concentration of Thymus vulgaris Essential Oil on Antibacterial Efficacy In Vitro

Michela Galgano;Francesco Pellegrini;Daniela Mrenoshki;Paolo Capozza;Ahmed Hassan Omar;Anna Salvaggiulo;Michele Camero;Gianvito Lanave;Maria Tempesta;
2023-01-01

Abstract

The overuse and misuse of antibiotics can pose the risk of spreading mutant strains that show antimicrobial resistance (AMR), with negative impacts on the management of bacterial infections and economic implications for healthcare systems. The research and development of natural antibacterial agents could be a priority in the next years to improve a number of effective antibacterial molecules and to reduce the AMR phenomenon and its development. The present study identified the most effective concentration and contact time of Thymus vulgaris L. essential oil (TEO) to obtain bactericidal effects in vitro against different Gram-positive and Gram-negative bacterial strains. Six clinically isolated (wild types) bacterial strains, (Citrobacter freundii, Enterococcus feciorum, Proteus mirabilis, Acinetobacter cioffi, Pseudomonas putrefaciens and Klebsiella pneumoniae) and two ATCCs (Staphylococcus aureus and Streptococcus mutans) were tested after 1 min, 3 min and 5 min of contact with TEO. The preliminary results on S. aureus after 24 h of incubation revealed a TEO concentration of 9.28 mg/mL (w/v) that completely inhibited bacteria growth, keeping cell viability. The total suppression of bacterial growth at all tested contact times was observed for all tested bacterial strains, and the results were confirmed after 48 h of incubation. Bacterial growth suppression was confirmed even with the presence of organic components. These preliminary results showed the in vitro antimicrobial efficacy of TEO against different Gram-positive and Gram-negative bacterial strains. Future studies are necessary to confirm the reproducibility of these results even on other strains and to define the exact molecular mechanisms of EOs in order to consider TEO as a valid alternative to classic antibiotic therapies and subsequently to reduce the occurrence of AMR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/437780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact