The ability to recognize rotated objects has been widely reported in the animal kingdom. Studies on animal and human spatial cognition highlighted the importance of visuo-spatial cognitive capability for surviving in a dynamic world. Although domestic animals are frequently involved in activities requiring a high level of visuo-spatial ability, currently, little is known about their visuo-spatial skills. To investigate this issue, we trained six dogs to discriminate between 3D objects (using a modified version of the Shepard-Metzler task) that were then reproduced digitally on a computer. We found that the dogs recognized three-dimensional objects and their rotated versions (45° and 180°) more easily when presented on the left side of the screen, suggesting right hemisphere superiority in the control of visuo-spatial functions. Moreover, we report inter-individual variability in their performance in the visuo-spatial task. Our preliminary results suggest that dogs could use a rotational invariance process for the discrimination of 3D rotated shapes that deserves further investigation.

Effect of Attentional Bias on the 3D Rotated Objects Recognition Ability of Dogs

Siniscalchi, Marcello;d'Ingeo, Serenella
;
Quaranta, Angelo
2023-01-01

Abstract

The ability to recognize rotated objects has been widely reported in the animal kingdom. Studies on animal and human spatial cognition highlighted the importance of visuo-spatial cognitive capability for surviving in a dynamic world. Although domestic animals are frequently involved in activities requiring a high level of visuo-spatial ability, currently, little is known about their visuo-spatial skills. To investigate this issue, we trained six dogs to discriminate between 3D objects (using a modified version of the Shepard-Metzler task) that were then reproduced digitally on a computer. We found that the dogs recognized three-dimensional objects and their rotated versions (45° and 180°) more easily when presented on the left side of the screen, suggesting right hemisphere superiority in the control of visuo-spatial functions. Moreover, we report inter-individual variability in their performance in the visuo-spatial task. Our preliminary results suggest that dogs could use a rotational invariance process for the discrimination of 3D rotated shapes that deserves further investigation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/434820
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact