Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse-wavevector component of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse "kicks" to the photons in the beam. We engineer our quantum walk so that it realizes a periodically driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Two-dimensional topological quantum walks in the momentum space of structured light
Maria MaffeiFormal Analysis
;
2020-01-01
Abstract
Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse-wavevector component of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse "kicks" to the photons in the beam. We engineer our quantum walk so that it realizes a periodically driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing AgreementFile | Dimensione | Formato | |
---|---|---|---|
10. Two-dimensional topological quantum walks (2020).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.24 MB
Formato
Adobe PDF
|
2.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.