Anomalous weak values and the Wigner function's negativity are well-known witnesses of quantum contextuality. We show that these effects occur when analyzing the energetics of a single-qubit gate generated by a resonant coherent field traveling in a waveguide. The buildup of correlations between the qubit and the field is responsible for bounds on the gate fidelity, but also for a nontrivial energy balance recently observed in a superconducting setup. In the experimental scheme, the field is continuously monitored through heterodyne detection and then postselected over the outcomes of a final qubit's measurement. The postselected data can be interpreted as the field's weak values and can show anomalous values in the variation of the field's energy. We model the joint system dynamics with a collision model, gaining access to the qubit-field entangled state at any time. We find an analytical expression of the quasiprobability distribution of the postselected heterodyne signal, i.e., the conditional Husimi-Q function. The latter grants access to all the field's weak values: we use it to obtain that of the field's energy change and display its anomalous behavior. Finally, we derive the field's conditional Wigner function and show that anomalous weak values and Wigner function negativities arise for the same values of the gate's angle.

Anomalous energy exchanges and Wigner-function negativities in a single-qubit gate

Maffei M.
Writing – Original Draft Preparation
;
2023-01-01

Abstract

Anomalous weak values and the Wigner function's negativity are well-known witnesses of quantum contextuality. We show that these effects occur when analyzing the energetics of a single-qubit gate generated by a resonant coherent field traveling in a waveguide. The buildup of correlations between the qubit and the field is responsible for bounds on the gate fidelity, but also for a nontrivial energy balance recently observed in a superconducting setup. In the experimental scheme, the field is continuously monitored through heterodyne detection and then postselected over the outcomes of a final qubit's measurement. The postselected data can be interpreted as the field's weak values and can show anomalous values in the variation of the field's energy. We model the joint system dynamics with a collision model, gaining access to the qubit-field entangled state at any time. We find an analytical expression of the quasiprobability distribution of the postselected heterodyne signal, i.e., the conditional Husimi-Q function. The latter grants access to all the field's weak values: we use it to obtain that of the field's energy change and display its anomalous behavior. Finally, we derive the field's conditional Wigner function and show that anomalous weak values and Wigner function negativities arise for the same values of the gate's angle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/433201
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact