Obtaining the total wavefunction evolution of interacting quantum systems provides access to important properties, such as entanglement, shedding light on fundamental aspects, e.g., quantum energetics and thermodynamics, and guiding towards possible application in the fields of quantum computation and communication. We consider a two-level atom (qubit) coupled to the continuum of travelling modes of a field confined in a one-dimensional chiral waveguide. Originally, we treated the light-matter ensemble as a closed, isolated system. We solve its dynamics using a collision model where individual temporal modes of the field locally interact with the qubit in a sequential fashion. This approach allows us to obtain the total wavefunction of the qubit-field system, at any time, when the field starts in a coherent or a single-photon state. Our method is general and can be applied to other initial field states.

Closed-System Solution of the 1D Atom from Collision Model

Maffei, Maria
Writing – Original Draft Preparation
;
2022-01-01

Abstract

Obtaining the total wavefunction evolution of interacting quantum systems provides access to important properties, such as entanglement, shedding light on fundamental aspects, e.g., quantum energetics and thermodynamics, and guiding towards possible application in the fields of quantum computation and communication. We consider a two-level atom (qubit) coupled to the continuum of travelling modes of a field confined in a one-dimensional chiral waveguide. Originally, we treated the light-matter ensemble as a closed, isolated system. We solve its dynamics using a collision model where individual temporal modes of the field locally interact with the qubit in a sequential fashion. This approach allows us to obtain the total wavefunction of the qubit-field system, at any time, when the field starts in a coherent or a single-photon state. Our method is general and can be applied to other initial field states.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/433180
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact