Purpose: To shed light on the idea that mesenchymal stem/stromal cells (MSCs) recruited in synovium (SM) (i.e.Synovium-Derived Stromal Cells, SDSCs) could be involved in Osteoarthritis (OA) pathophysiology. Attention was also paid to a further stomal cell type with a peculiar ultrastructure called telocytes (TCs), whose role is far from clarified. Methods: In the present in vitro study, we compared SDSCs isolated from healthy and OA subjects in terms of phenotype, morphology and differentiation potential as well as in their capability to activate normal Peripheral Blood Mononuclear Cells (PBMCs). Histological, immunohistochemical and ultrastructural analyses were integrated by qRT-PCR and functional resorbing assays. Results: Our data demonstrated that both SDSC populations stimulated the formation of osteoclasts from PBMCs: the osteoclast-like cells generated by healthy-SDSCs via transwell co-cultures were inactive, while OA-derived SDSCs have a much greater effectiveness. Moreover, the presence of TCs was more evident in cultures obtained from OA subjects and suggests a possible involvement of these cells in OA. Conclusions: Osteoclastogenic differentiation capability of PBMCs from OA subjects, also induced by B synoviocytes has been already documented. Here we hypothesized that SDSCs, generally considered for their regenerative potential in cartilage lesions, have also a role in the onset/maintenance of OA. Clinical relevance: Our observations may represent an interesting opportunity for the development of a holistic approach for OA treatment, that considers the multifaceted capability of MSCs in relation to the environment.

Synovium-derived stromal cell-induced osteoclastogenesis: a potential osteoarthritis trigger

Dicarlo, Manuela;Gigante, Antonio;
2019-01-01

Abstract

Purpose: To shed light on the idea that mesenchymal stem/stromal cells (MSCs) recruited in synovium (SM) (i.e.Synovium-Derived Stromal Cells, SDSCs) could be involved in Osteoarthritis (OA) pathophysiology. Attention was also paid to a further stomal cell type with a peculiar ultrastructure called telocytes (TCs), whose role is far from clarified. Methods: In the present in vitro study, we compared SDSCs isolated from healthy and OA subjects in terms of phenotype, morphology and differentiation potential as well as in their capability to activate normal Peripheral Blood Mononuclear Cells (PBMCs). Histological, immunohistochemical and ultrastructural analyses were integrated by qRT-PCR and functional resorbing assays. Results: Our data demonstrated that both SDSC populations stimulated the formation of osteoclasts from PBMCs: the osteoclast-like cells generated by healthy-SDSCs via transwell co-cultures were inactive, while OA-derived SDSCs have a much greater effectiveness. Moreover, the presence of TCs was more evident in cultures obtained from OA subjects and suggests a possible involvement of these cells in OA. Conclusions: Osteoclastogenic differentiation capability of PBMCs from OA subjects, also induced by B synoviocytes has been already documented. Here we hypothesized that SDSCs, generally considered for their regenerative potential in cartilage lesions, have also a role in the onset/maintenance of OA. Clinical relevance: Our observations may represent an interesting opportunity for the development of a holistic approach for OA treatment, that considers the multifaceted capability of MSCs in relation to the environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/432580
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact