Abstract The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 10(11) to 10(12) bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.
The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 10(11) to 10(12) bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.
Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options
Bonfrate, Leonilde;Portincasa, Piero
2013-01-01
Abstract
The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 10(11) to 10(12) bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.