Coagulase-negative staphylococci (CoNS) widely colonize the human skin and play an active role in host defense. However, these bacteria may cause malodours and increase infection incidence rate in immune-compromised patients and individuals with catheters and implants. CoNS spreading is favored by biofilm formation that also promotes the release of virulence factors and drug resistance. Biofilm control or eradication by antimicrobial peptides (AMPs) represents an attractive strategy which is worth investigating. In this work, bovine lactoferrin (BLF) hydrolysate (HLF) was in vitro evaluated for its antimicrobial and antibiofilm activities against skin-related coagulase negative and positive staphylococci. Despite a minimal inhibitory concentration (MIC) recorded for HLF ranging from 10 to more than 20 mg/mL, a minimal biofilm inhibitory concentration (MIBC) equal to 2.5 mg/mL was found for most target strains. Conversely, MIBC values referred to the individual peptides, LFcinB or LFmpin (herein purified and identified) were significantly lower. Finally, the application of 2.5 mg/mL HLF solution by dipping and spraying on biofilm-attached glass surfaces also caused a high biofilm eradication rate depending on the incubation time, thus attracting interest for future applications in cosmetic formulation for skin care.
Lactoferrin-derived peptides as a control strategy against skinborne staphylococcal biofilms
Caputo L.;Cavalluzzi M. M.;Denora N.
2020-01-01
Abstract
Coagulase-negative staphylococci (CoNS) widely colonize the human skin and play an active role in host defense. However, these bacteria may cause malodours and increase infection incidence rate in immune-compromised patients and individuals with catheters and implants. CoNS spreading is favored by biofilm formation that also promotes the release of virulence factors and drug resistance. Biofilm control or eradication by antimicrobial peptides (AMPs) represents an attractive strategy which is worth investigating. In this work, bovine lactoferrin (BLF) hydrolysate (HLF) was in vitro evaluated for its antimicrobial and antibiofilm activities against skin-related coagulase negative and positive staphylococci. Despite a minimal inhibitory concentration (MIC) recorded for HLF ranging from 10 to more than 20 mg/mL, a minimal biofilm inhibitory concentration (MIBC) equal to 2.5 mg/mL was found for most target strains. Conversely, MIBC values referred to the individual peptides, LFcinB or LFmpin (herein purified and identified) were significantly lower. Finally, the application of 2.5 mg/mL HLF solution by dipping and spraying on biofilm-attached glass surfaces also caused a high biofilm eradication rate depending on the incubation time, thus attracting interest for future applications in cosmetic formulation for skin care.File | Dimensione | Formato | |
---|---|---|---|
Quintieri2020Biomedicines.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.