Unpleasant, compared to neutral, scenes reliably prompt enhanced functional brain activity in the amygdala and inferotemporal cortex. Considering data from psychophysiological studies in which defensive reactivity is further enhanced when viewing unpleasant scenes under threat of shock (compared to safety), the current study investigates functional activation in the amygdala-inferotemporal circuit when unpleasant (or neutral) scenes are viewed under threat of shock or safety. In this paradigm, a cue signaling threat or safety was presented in conjunction with either an unpleasant or neutral picture. Replicating previous studies, unpleasant, compared to neutral, scenes reliably enhanced activation in the amygdala and inferotemporal cortex. Functional activity in these regions, however, did not differ whether scenes were presented in a context threatening shock exposure, compared to safety, which instead activated regions of the anterior insula and cingulate cortex. Taken together, the data support a view in which neural regions activated in different defensive situations act independently.

Aversive perception in a threat context: Separate and independent neural activation

Sambuco N.
;
2020-01-01

Abstract

Unpleasant, compared to neutral, scenes reliably prompt enhanced functional brain activity in the amygdala and inferotemporal cortex. Considering data from psychophysiological studies in which defensive reactivity is further enhanced when viewing unpleasant scenes under threat of shock (compared to safety), the current study investigates functional activation in the amygdala-inferotemporal circuit when unpleasant (or neutral) scenes are viewed under threat of shock or safety. In this paradigm, a cue signaling threat or safety was presented in conjunction with either an unpleasant or neutral picture. Replicating previous studies, unpleasant, compared to neutral, scenes reliably enhanced activation in the amygdala and inferotemporal cortex. Functional activity in these regions, however, did not differ whether scenes were presented in a context threatening shock exposure, compared to safety, which instead activated regions of the anterior insula and cingulate cortex. Taken together, the data support a view in which neural regions activated in different defensive situations act independently.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/430841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact