Given a smooth hypersurface $X\subset \mathbb{P}^{n+1}$ of degree $d\geqslant 2$, we study the cones $V^h_p\subset \mathbb{P}^{n+1}$ swept out by lines having contact order $h\geqslant 2$ at a point $p\in X$. In particular, we prove that if $X$ is general, then for any $p\in X$ and $2 \leqslant h\leqslant \min\{ n+1,d\}$, the cone $V^h_p$ has dimension exactly $n+2-h$. Moreover, when $X$ is a very general hypersurface of degree $d\geqslant 2n+2$, we describe the relation between the cones $V^h_p$ and the degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$. As an application, we give some bounds on the least degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$, and we prove that the connecting gonality of $X$ satisfies $d-\left\lfloor\frac{\sqrt{16n+25}-3}{2}\right\rfloor\leqslant\conngon(X)\leqslant d-\left\lfloor\frac{\sqrt{8n+1}+1}{2}\right\rfloor$.

Cones of lines having high contact with general hypersurfaces and applications

Bastianelli F.
;
2023-01-01

Abstract

Given a smooth hypersurface $X\subset \mathbb{P}^{n+1}$ of degree $d\geqslant 2$, we study the cones $V^h_p\subset \mathbb{P}^{n+1}$ swept out by lines having contact order $h\geqslant 2$ at a point $p\in X$. In particular, we prove that if $X$ is general, then for any $p\in X$ and $2 \leqslant h\leqslant \min\{ n+1,d\}$, the cone $V^h_p$ has dimension exactly $n+2-h$. Moreover, when $X$ is a very general hypersurface of degree $d\geqslant 2n+2$, we describe the relation between the cones $V^h_p$ and the degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$. As an application, we give some bounds on the least degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$, and we prove that the connecting gonality of $X$ satisfies $d-\left\lfloor\frac{\sqrt{16n+25}-3}{2}\right\rfloor\leqslant\conngon(X)\leqslant d-\left\lfloor\frac{\sqrt{8n+1}+1}{2}\right\rfloor$.
File in questo prodotto:
File Dimensione Formato  
Bastianelli Ciliberto Flamini Supino - Cones of lines having high contact with hypersurfaces and applications.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 242.9 kB
Formato Adobe PDF
242.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
BCFS_irr_k_v2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 353.93 kB
Formato Adobe PDF
353.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/430588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact