The expansion of aquaculture practices in coastal areas can alter the balance of microbial communities in nearby marine ecosystems with negative impacts on both farmed and natural species, as well as on human health through their consumption. Among marine filter-feeder invertebrates, poriferans are known as effective microbial bioremediators, even though they are currently still underutilized in association with fish mariculture plants. In this study, we investigate the microbial bioremediation capability of the demosponge Hymeniacidon perlevis in an experimental land-based fish farm where this species occurred consistently in the drainage conduit of the wastewater. Microbiological analyses of cultivable vibrios, total culturable bacteria (37 degrees C), fecal and total coliforms, and fecal enterococci were carried out on the fish farm wastewater in two sampling periods: autumn and spring. The results showed that H. perlevis is able to filter and remove all the considered bacterial groups from the wastewater, including human potential pathogens, in both sampling periods. This finding sustains the hypothesis of H. perlevis use as a bioremediator in land-based aquaculture plants as well.
Bioremediation Capabilities of Hymeniacidon perlevis (Porifera, Demospongiae) in a Land-Based Experimental Fish Farm
Longo C.;Pierri C.;Mercurio M.;Trani R.
;Carbonara P.;Alfonso S.;
2022-01-01
Abstract
The expansion of aquaculture practices in coastal areas can alter the balance of microbial communities in nearby marine ecosystems with negative impacts on both farmed and natural species, as well as on human health through their consumption. Among marine filter-feeder invertebrates, poriferans are known as effective microbial bioremediators, even though they are currently still underutilized in association with fish mariculture plants. In this study, we investigate the microbial bioremediation capability of the demosponge Hymeniacidon perlevis in an experimental land-based fish farm where this species occurred consistently in the drainage conduit of the wastewater. Microbiological analyses of cultivable vibrios, total culturable bacteria (37 degrees C), fecal and total coliforms, and fecal enterococci were carried out on the fish farm wastewater in two sampling periods: autumn and spring. The results showed that H. perlevis is able to filter and remove all the considered bacterial groups from the wastewater, including human potential pathogens, in both sampling periods. This finding sustains the hypothesis of H. perlevis use as a bioremediator in land-based aquaculture plants as well.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.