The motion of a Brownian particle in the presence of Coulomb friction and an asymmetric spatial potential was evaluated in this study. The system exhibits a ratchet effect, i.e., an average directed motion even in the absence of an external force, induced by the coupling of non-equilibrium conditions with the spatial asymmetry. Both the average motion and the fluctuations of the Brownian particle were analysed. The stationary velocity shows a non-monotonic behaviour as a function of both the temperature and the viscosity of the bath. The diffusion properties of the particle, which show several time regimes, were also investigated. To highlight the role of non-linear friction in the dynamics, a comparison is presented with a linear model of a Brownian particle driven by a constant external force, which allows for analytical treatment. In particular, the study unveils that the passage times between different temporal regimes are strongly affected by the presence of Coulomb friction.

Diffusion Properties of a Brownian Ratchet with Coulomb Friction

Semeraro, M;Gonnella, G;
2023-01-01

Abstract

The motion of a Brownian particle in the presence of Coulomb friction and an asymmetric spatial potential was evaluated in this study. The system exhibits a ratchet effect, i.e., an average directed motion even in the absence of an external force, induced by the coupling of non-equilibrium conditions with the spatial asymmetry. Both the average motion and the fluctuations of the Brownian particle were analysed. The stationary velocity shows a non-monotonic behaviour as a function of both the temperature and the viscosity of the bath. The diffusion properties of the particle, which show several time regimes, were also investigated. To highlight the role of non-linear friction in the dynamics, a comparison is presented with a linear model of a Brownian particle driven by a constant external force, which allows for analytical treatment. In particular, the study unveils that the passage times between different temporal regimes are strongly affected by the presence of Coulomb friction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/425954
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact