Significantly increased production of biobased polymers is a prerequisite to replace petroleum-based materials towards reaching a circular bioeconomy. However, many renewable building blocks from wood and other plant material are not directly amenable for polymerization, due to their inert backbones and/or lack of functional group compatibility with the desired polymerization type. Based on a retro-biosynthetic analysis of polyesters, a chemoenzymatic route from (-)-alpha-pinene towards a verbanone-based lactone, which is further used in ring-opening polymerization, is presented. Generated pinene-derived polyesters showed elevated degradation and glass transition temperatures, compared with poly(epsilon-decalactone), which lacks a ring structure in its backbone. Semirational enzyme engineering of the cyclohexanone monooxygenase from Acinetobacter calcoaceticus enabled the biosynthesis of the key lactone intermediate for the targeted polyester. As a proof of principle, one enzyme variant identified from screening in a microtiter plate was used in biocatalytic upscaling, which afforded the bicyclic lactone in 39 % conversion in shake flask scale reactions.

A Retro-biosynthesis-Based Route to Generate Pinene-Derived Polyesters

Biundo, Antonino;
2019-01-01

Abstract

Significantly increased production of biobased polymers is a prerequisite to replace petroleum-based materials towards reaching a circular bioeconomy. However, many renewable building blocks from wood and other plant material are not directly amenable for polymerization, due to their inert backbones and/or lack of functional group compatibility with the desired polymerization type. Based on a retro-biosynthetic analysis of polyesters, a chemoenzymatic route from (-)-alpha-pinene towards a verbanone-based lactone, which is further used in ring-opening polymerization, is presented. Generated pinene-derived polyesters showed elevated degradation and glass transition temperatures, compared with poly(epsilon-decalactone), which lacks a ring structure in its backbone. Semirational enzyme engineering of the cyclohexanone monooxygenase from Acinetobacter calcoaceticus enabled the biosynthesis of the key lactone intermediate for the targeted polyester. As a proof of principle, one enzyme variant identified from screening in a microtiter plate was used in biocatalytic upscaling, which afforded the bicyclic lactone in 39 % conversion in shake flask scale reactions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/425514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact