Light-field microscopy represents a promising solution for microscopic volumetric imaging, thanks to its capability to encode information on multiple planes in a single acquisition. This is achieved through its peculiar simultaneous capture of information on light spatial distribution and propagation direction. However, state-of-the-art light-field microscopes suffer from a detrimental loss of spatial resolution compared to standard microscopes. In this article, we experimentally demonstrate the working principle of a new scheme, called Correlation Light-field Microscopy (CLM), where the correlation between two light beams is exploited to achieve volumetric imaging with a resolution that is only limited by diffraction. In CLM, a correlation image is obtained by measuring intensity correlations between a large number of pairs of ultra-short frames; each pair of frames is illuminated by the two correlated beams, and is exposed for a time comparable with the source coherence time. We experimentally show the capability of CLM to recover the information contained in out-of-focus planes within three-dimensional test targets and biomedical phantoms. In particular, we demonstrate the improvement of the depth of field enabled by CLM with respect to a conventional microscope characterized by the same resolution. Moreover, the multiple perspectives contained in a single correlation image enable reconstructing over 50 distinguishable transverse planes within a 1 mm(3) sample.

Light-field microscopy with correlated beams for high-resolution volumetric imaging

Massaro, Gianlorenzo;Giannella, Davide;Scagliola, Alessio;Lena, Francesco Di;Garuccio, Augusto;Pepe, Francesco V
;
D'Angelo, Milena
2022-01-01

Abstract

Light-field microscopy represents a promising solution for microscopic volumetric imaging, thanks to its capability to encode information on multiple planes in a single acquisition. This is achieved through its peculiar simultaneous capture of information on light spatial distribution and propagation direction. However, state-of-the-art light-field microscopes suffer from a detrimental loss of spatial resolution compared to standard microscopes. In this article, we experimentally demonstrate the working principle of a new scheme, called Correlation Light-field Microscopy (CLM), where the correlation between two light beams is exploited to achieve volumetric imaging with a resolution that is only limited by diffraction. In CLM, a correlation image is obtained by measuring intensity correlations between a large number of pairs of ultra-short frames; each pair of frames is illuminated by the two correlated beams, and is exposed for a time comparable with the source coherence time. We experimentally show the capability of CLM to recover the information contained in out-of-focus planes within three-dimensional test targets and biomedical phantoms. In particular, we demonstrate the improvement of the depth of field enabled by CLM with respect to a conventional microscope characterized by the same resolution. Moreover, the multiple perspectives contained in a single correlation image enable reconstructing over 50 distinguishable transverse planes within a 1 mm(3) sample.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/424539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact