In this paper, we report on an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES)-based carbon monoxide (CO) sensor exploiting custom quartz tuning forks (QTFs) as a photodetector, a multi-pass cell and a mid-infrared quantum cascade laser (QCL) for the first time. The QCL emitting at 4.58 gm with output power of 145 mW was employed as exciting source and the multi-pass cell was employed to increase the gas absorption pathlength. To reduce the noise level, wavelength modulation spectroscopy (WMS) and second harmonic demodulation techniques were exploited. Three QTFs including two custom QTFs (#1 and #2) with different geometries and a commercial standard QTF (#3) were tested as photodetector in the gas sensor. When the integration time of the system was set at 200 ms, minimum detection limits (MDLs) of 750 part-per-trillion (ppt), 4.6 part-per-billion (ppb) and 5.8 ppb were achieved employing QTF #1 #2, and #3, respectively. A full sensor calibration was achieved using the most sensitive QTF#1, demonstrating an excellent linear response with CO concentration. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL

Pietro Patimisco;
2021-01-01

Abstract

In this paper, we report on an ultra-highly sensitive light-induced thermoelastic spectroscopy (LITES)-based carbon monoxide (CO) sensor exploiting custom quartz tuning forks (QTFs) as a photodetector, a multi-pass cell and a mid-infrared quantum cascade laser (QCL) for the first time. The QCL emitting at 4.58 gm with output power of 145 mW was employed as exciting source and the multi-pass cell was employed to increase the gas absorption pathlength. To reduce the noise level, wavelength modulation spectroscopy (WMS) and second harmonic demodulation techniques were exploited. Three QTFs including two custom QTFs (#1 and #2) with different geometries and a commercial standard QTF (#3) were tested as photodetector in the gas sensor. When the integration time of the system was set at 200 ms, minimum detection limits (MDLs) of 750 part-per-trillion (ppt), 4.6 part-per-billion (ppb) and 5.8 ppb were achieved employing QTF #1 #2, and #3, respectively. A full sensor calibration was achieved using the most sensitive QTF#1, demonstrating an excellent linear response with CO concentration. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
File in questo prodotto:
File Dimensione Formato  
130_opex_Ppt-level-carbon-monoxide-detection-with-LITES_2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/424090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 87
social impact