We report on the development of a highly sensitive hydrogen sulfide (H2S) gas sensor exploiting the doubly resonant photoacoustic spectroscopy technique and using a near-infrared laser emitting at 1578.128 nm. By targeting the R(4) transition of H2S, we achieved a minimum detection limit of 10 part per billion in concen-tration and a normalized noise equivalent absorption coefficient of 8.9 x 10(-12) W cm(-1) Hz(-1/2). A laser-cavity-molecule locking strategy is proposed to enhance the sensor stability for fast measurement when dealing with external disturbances. A comparison among the state-of-the-art H2S sensors using various spectroscopic tech-niques confirmed the record sensitivity achieved in this work.

Parts-per-billion-level detection of hydrogen sulfide based on doubly resonant photoacoustic spectroscopy with line-locking

Patimisco, Pietro;
2023-01-01

Abstract

We report on the development of a highly sensitive hydrogen sulfide (H2S) gas sensor exploiting the doubly resonant photoacoustic spectroscopy technique and using a near-infrared laser emitting at 1578.128 nm. By targeting the R(4) transition of H2S, we achieved a minimum detection limit of 10 part per billion in concen-tration and a normalized noise equivalent absorption coefficient of 8.9 x 10(-12) W cm(-1) Hz(-1/2). A laser-cavity-molecule locking strategy is proposed to enhance the sensor stability for fast measurement when dealing with external disturbances. A comparison among the state-of-the-art H2S sensors using various spectroscopic tech-niques confirmed the record sensitivity achieved in this work.
File in questo prodotto:
File Dimensione Formato  
152_Ppb-H2S-doubly-resonant-PAS_photoacoustics-2023.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/424051
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact