: In this Letter, a side-excitation light-induced thermoelastic spectroscopy (SE-LITES) technique was developed for trace gas detection. A novel, to the best of our knowledge, custom quartz tuning fork (QTF) was used as a transducer for photon detection by the thermoelastic effect. The mechanical stress distribution on the QTF surface was analyzed to identify the optimum thermoelastic excitation approach. The electrode film on the QTF surface also works as a partially reflective layer to obtain a long optical absorption path inside the QTF body. With the long optical absorption length and the inner face excitation of the QTF, the thermoelastic effect was greatly enhanced. With an optimized modulation depth, a signal-to-noise ratio (SNR) improvement of more than one order of magnitude was achieved, compared to traditional LITES.

Side-excitation light-induced thermoelastic spectroscopy

Giglio, Marilena;Sampaolo, Angelo;Patimisco, Pietro;Spagnolo, Vincenzo;
2023-01-01

Abstract

: In this Letter, a side-excitation light-induced thermoelastic spectroscopy (SE-LITES) technique was developed for trace gas detection. A novel, to the best of our knowledge, custom quartz tuning fork (QTF) was used as a transducer for photon detection by the thermoelastic effect. The mechanical stress distribution on the QTF surface was analyzed to identify the optimum thermoelastic excitation approach. The electrode film on the QTF surface also works as a partially reflective layer to obtain a long optical absorption path inside the QTF body. With the long optical absorption length and the inner face excitation of the QTF, the thermoelastic effect was greatly enhanced. With an optimized modulation depth, a signal-to-noise ratio (SNR) improvement of more than one order of magnitude was achieved, compared to traditional LITES.
File in questo prodotto:
File Dimensione Formato  
154_Side-excitiation-QEPAS_ol-48-3-562_2023.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/424047
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact