The present study was conducted to analyze the erosive potential of the ever-increasing consumption of carbonated drinks on the dental surface. To identify relevant studies, a comprehensive search was conducted on PubMed, Scopus, and Web of Science covering the last 5 years (2018–2023) using the following Boolean keywords: “soft drinks AND tooth”. Finally, a total of 19 studies were included. The initial search provided a total of 407 items. Nineteen records were finally involved in the inclusion phase, seven of which were in vivo and twelve in vitro. An abuse of carbonated acid substances leads to an increase in the possibility of dental erosion with consequent structural disintegration and reduction of the physical and mechanical properties of the enamel. There is thus greater bacterial adhesion on rougher surfaces, determined by the erosive process, and therefore a greater risk of caries. The pH of most commercialized carbonated drinks is lower than the critical pH for the demineralization of the enamel. Carbonated drinks’ pH and duration of exposure have different deleterious effects on enamel.

Damage from Carbonated Soft Drinks on Enamel: A Systematic Review

Mancini, Antonio;Inchingolo, Francesco
;
Di Venere, Daniela;Dipalma, Gianna
;
2023-01-01

Abstract

The present study was conducted to analyze the erosive potential of the ever-increasing consumption of carbonated drinks on the dental surface. To identify relevant studies, a comprehensive search was conducted on PubMed, Scopus, and Web of Science covering the last 5 years (2018–2023) using the following Boolean keywords: “soft drinks AND tooth”. Finally, a total of 19 studies were included. The initial search provided a total of 407 items. Nineteen records were finally involved in the inclusion phase, seven of which were in vivo and twelve in vitro. An abuse of carbonated acid substances leads to an increase in the possibility of dental erosion with consequent structural disintegration and reduction of the physical and mechanical properties of the enamel. There is thus greater bacterial adhesion on rougher surfaces, determined by the erosive process, and therefore a greater risk of caries. The pH of most commercialized carbonated drinks is lower than the critical pH for the demineralization of the enamel. Carbonated drinks’ pH and duration of exposure have different deleterious effects on enamel.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/423335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact