In this work, chalcogen functionalized dithiophenes, equipped on both extremities with chalcogen-bonding recognition heterocycles, have been prepared following two synthetic pathways. The insertion of the chalcogenazolo[5,4-beta]pyridine allows the control of the organization at the solid state. X-Ray diffraction analysis of the single crystals, showed that the Te-doped derivatives give the most persistant assemblies, with the molecules arranging at solid-state in wire-like polymeric structures through TeMIDLINE HORIZONTAL ELLIPSISN interactions. As expected, the introduction of the Se and Te atoms, dramatically decreases the emission properties, with the Te-bearing congeners being virtually non emissive.

Non-covalent bridging of bithiophenes through chalcogen bonding grips

Babudri, F;
2020-01-01

Abstract

In this work, chalcogen functionalized dithiophenes, equipped on both extremities with chalcogen-bonding recognition heterocycles, have been prepared following two synthetic pathways. The insertion of the chalcogenazolo[5,4-beta]pyridine allows the control of the organization at the solid state. X-Ray diffraction analysis of the single crystals, showed that the Te-doped derivatives give the most persistant assemblies, with the molecules arranging at solid-state in wire-like polymeric structures through TeMIDLINE HORIZONTAL ELLIPSISN interactions. As expected, the introduction of the Se and Te atoms, dramatically decreases the emission properties, with the Te-bearing congeners being virtually non emissive.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/421522
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact