Abstract: Background: Obesity, which causes physical and mental problems, is a global health problem with serious consequences. The prevalence of obesity is increasing steadily, and therefore, new research is needed that examines the influencing factors of obesity and how to predict the occurrence of the condition according to these factors. This study aimed to predict the level of obesity based on physical activity and eating habits using the trained neural network model.Methods: The chi-square, F-Classify, andmutual information classification algorithmswere used to identify themost critical factors associated with obesity. The models’ performances were compared using a trained neural network with different feature sets. The hyperparameters of themodelswere optimized using Bayesian optimization techniques, which are faster and more effective than traditional techniques. Results: The results predicted the level of obesity with average accuracies of 93.06%, 89.04%, 90.32%, and 86.52% for all features using the neural network and for the features selected by the chi-square, F-Classify, and mutual information classification algorithms. The results showed that physical activity, alcohol consumption, use of technological devices,frequent consumption of high-calorie meals, and frequency of vegetable consumption were the most important factors affecting obesity. Conclusions: The F-Classify score algorithm identified the most essential features for obesity level estimation. Furthermore, physical activity and eating habits were the most critical factors for obesity prediction.
Estimation of Obesity Levels with a Trained Neural Network Approach optimized by the Bayesian Technique
Gianpiero Greco
;Francesco Fischetti;
2023-01-01
Abstract
Abstract: Background: Obesity, which causes physical and mental problems, is a global health problem with serious consequences. The prevalence of obesity is increasing steadily, and therefore, new research is needed that examines the influencing factors of obesity and how to predict the occurrence of the condition according to these factors. This study aimed to predict the level of obesity based on physical activity and eating habits using the trained neural network model.Methods: The chi-square, F-Classify, andmutual information classification algorithmswere used to identify themost critical factors associated with obesity. The models’ performances were compared using a trained neural network with different feature sets. The hyperparameters of themodelswere optimized using Bayesian optimization techniques, which are faster and more effective than traditional techniques. Results: The results predicted the level of obesity with average accuracies of 93.06%, 89.04%, 90.32%, and 86.52% for all features using the neural network and for the features selected by the chi-square, F-Classify, and mutual information classification algorithms. The results showed that physical activity, alcohol consumption, use of technological devices,frequent consumption of high-calorie meals, and frequency of vegetable consumption were the most important factors affecting obesity. Conclusions: The F-Classify score algorithm identified the most essential features for obesity level estimation. Furthermore, physical activity and eating habits were the most critical factors for obesity prediction.File | Dimensione | Formato | |
---|---|---|---|
Obesità applsci-13-03875.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
984.82 kB
Formato
Adobe PDF
|
984.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.