In this paper we consider the system in ℝ3(0.1) { -ε2 Δu + V(x)u + Φ(x)u = up, -ΔΦ = u2, for p ε (1, 5). We prove the existence of multi-bump solutions whose bumps concentrate around a local minimum of the potential V(x). We point out that such solutions do not exist in the framework of the usual Nonlinear Schrödinger Equation.

Cluster solutions for the schrödinger-poisson-slater problem around a local minimum of the potential

VAIRA Giusi
;
2011-01-01

Abstract

In this paper we consider the system in ℝ3(0.1) { -ε2 Δu + V(x)u + Φ(x)u = up, -ΔΦ = u2, for p ε (1, 5). We prove the existence of multi-bump solutions whose bumps concentrate around a local minimum of the potential V(x). We point out that such solutions do not exist in the framework of the usual Nonlinear Schrödinger Equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/421132
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact