In this paper we consider the system in ℝ3(0.1) { -ε2 Δu + V(x)u + Φ(x)u = up, -ΔΦ = u2, for p ε (1, 5). We prove the existence of multi-bump solutions whose bumps concentrate around a local minimum of the potential V(x). We point out that such solutions do not exist in the framework of the usual Nonlinear Schrödinger Equation.
Cluster solutions for the schrödinger-poisson-slater problem around a local minimum of the potential
VAIRA Giusi
;
2011-01-01
Abstract
In this paper we consider the system in ℝ3(0.1) { -ε2 Δu + V(x)u + Φ(x)u = up, -ΔΦ = u2, for p ε (1, 5). We prove the existence of multi-bump solutions whose bumps concentrate around a local minimum of the potential V(x). We point out that such solutions do not exist in the framework of the usual Nonlinear Schrödinger Equation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.