In this paper we consider the following elliptic system in, where λ is a real parameter, p ∈(1, 5) if λ < 0 while p ∈(3, 5) if λ > 0 and K(x), a(x) are non-negative real functions defined on ℝ3. Assuming that lim{pipe}x{pipe}→+∞K(x)=K∞ >0 and lim{pipe}x{pipe}→+∞a(x)=a∞ >0 and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive ground states, namely the existence of positive solutions with minimal energy. © 2011 Università degli Studi di Napoli "Federico II".
Ground states for Schrödinger-Poisson type systems
VAIRA Giusi
2011-01-01
Abstract
In this paper we consider the following elliptic system in, where λ is a real parameter, p ∈(1, 5) if λ < 0 while p ∈(3, 5) if λ > 0 and K(x), a(x) are non-negative real functions defined on ℝ3. Assuming that lim{pipe}x{pipe}→+∞K(x)=K∞ >0 and lim{pipe}x{pipe}→+∞a(x)=a∞ >0 and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive ground states, namely the existence of positive solutions with minimal energy. © 2011 Università degli Studi di Napoli "Federico II".File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.