In this paper we study a system which is equivalent to a nonlocal version of the well known Brezis Nirenberg problem. The difficulties related with the lack of compactness are here emphasized by the nonlocal nature of the critical nonlinear term. We prove existence and nonexistence results of positive solutions when N=3 and existence of solutions in both the resonance and the nonresonance case for higher dimensions.

Generalized Schrödinger–Newton system in dimension N ⩾ 3: Critical case

Vaira G.
2017-01-01

Abstract

In this paper we study a system which is equivalent to a nonlocal version of the well known Brezis Nirenberg problem. The difficulties related with the lack of compactness are here emphasized by the nonlocal nature of the critical nonlinear term. We prove existence and nonexistence results of positive solutions when N=3 and existence of solutions in both the resonance and the nonresonance case for higher dimensions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/421125
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact