We study the following system of equations known as Schrödinger–Poisson problem (Formula Presented) where ϵ>0 is a small parameter, f:R→R is given, N ≥ 3 , aN is the surface measure of the unit sphere in RN and the unknowns are υ,ϕ:RN→R. We construct non-radial sign-changing multi-peak solutions in the semiclassical limit. The peaks are displaced in suitable symmetric configurations and collapse to the same point as ϵ→ 0. The proof is based on the Lyapunov–Schmidt reduction.

Non-radial sign-changing solutions for the Schrödinger–Poisson problem in the semiclassical limit

Vaira G.
2015-01-01

Abstract

We study the following system of equations known as Schrödinger–Poisson problem (Formula Presented) where ϵ>0 is a small parameter, f:R→R is given, N ≥ 3 , aN is the surface measure of the unit sphere in RN and the unknowns are υ,ϕ:RN→R. We construct non-radial sign-changing multi-peak solutions in the semiclassical limit. The peaks are displaced in suitable symmetric configurations and collapse to the same point as ϵ→ 0. The proof is based on the Lyapunov–Schmidt reduction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/421120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact