The ergodic properties of the shift on the C*-algebras generated by creators and annihilators on both the full and m-truncated t-free Fock spaces are analyzed. In particular, the shift is shown to be uniquely ergodic with respect to the fixed-point algebra. In addition, for every m ≥ 1, the invariant states of the shift acting on the m-truncated t-free C*-algebra are shown to yield a m + 1-dimensional Choquet simplex, which collapses to a segment in the full case. Finally, the spectrum of the position operators on the m-truncated t-free Fock space is also determined.

On truncated t-free Fock spaces: Spectrum of position operators and shift-invariant states

Vitonofrio Crismale;Simone Del Vecchio
;
Stefano Rossi
2023-01-01

Abstract

The ergodic properties of the shift on the C*-algebras generated by creators and annihilators on both the full and m-truncated t-free Fock spaces are analyzed. In particular, the shift is shown to be uniquely ergodic with respect to the fixed-point algebra. In addition, for every m ≥ 1, the invariant states of the shift acting on the m-truncated t-free C*-algebra are shown to yield a m + 1-dimensional Choquet simplex, which collapses to a segment in the full case. Finally, the spectrum of the position operators on the m-truncated t-free Fock space is also determined.
File in questo prodotto:
File Dimensione Formato  
Ontruncated.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 349.69 kB
Formato Adobe PDF
349.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CriDelRosfree.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 192.74 kB
Formato Adobe PDF
192.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/420054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact