Network connectivity has been thoroughly investigated in several domains, including physics, neuroscience, and social sciences. This work tackles the possibility of characterizing the topological properties of real-world networks from a quantum-inspired perspective. Starting from the normalized Laplacian of a network, we use a well-defined procedure, based on the dressing transformations, to derive a 1-dimensional Schrodinger-like equation characterized by the same eigenvalues. We investigate the shape and properties of the potential appearing in this equation in simulated small-world and scale-free network ensembles, using measures of fractality. Besides, we employ the proposed framework to compare real-world networks with the Erdos-Renyi, Watts-Strogatz and Barabasi-Albert benchmark models. Reconstructed potentials allow to assess to which extent real-world networks approach these models, providing further insight on their formation mechanisms and connectivity properties.

Characterization of real-world networks through quantum potentials

Amoroso, Nicola;Bellantuono, Loredana;Pascazio, Saverio
;
Monaco, Alfonso;Bellotti, Roberto
2021-01-01

Abstract

Network connectivity has been thoroughly investigated in several domains, including physics, neuroscience, and social sciences. This work tackles the possibility of characterizing the topological properties of real-world networks from a quantum-inspired perspective. Starting from the normalized Laplacian of a network, we use a well-defined procedure, based on the dressing transformations, to derive a 1-dimensional Schrodinger-like equation characterized by the same eigenvalues. We investigate the shape and properties of the potential appearing in this equation in simulated small-world and scale-free network ensembles, using measures of fractality. Besides, we employ the proposed framework to compare real-world networks with the Erdos-Renyi, Watts-Strogatz and Barabasi-Albert benchmark models. Reconstructed potentials allow to assess to which extent real-world networks approach these models, providing further insight on their formation mechanisms and connectivity properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/417492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact