Bioprosthetic heart valves (BHVs) are commonly used to replace severely diseased heart valves but their susceptibility to structural valve degeneration (SVD) limits their use in young patients. We hypothesized that antibodies against immunogenic glycans present on BHVs, particularly antibodies against the xenoantigens galactose-alpha 1,3-galactose (alpha Gal) and N-glycolylneuraminic acid (Neu5Gc), could mediate their deterioration through calcification. We established a large longitudinal prospective international cohort of patients (n = 1668, 34 +/- 43 months of follow-up (0.1-182); 4,998 blood samples) to investigate the hemodynamics and immune responses associated with BHVs up to 15 years after aortic valve replacement. Early signs of SVD appeared in <5% of BHV recipients within 2 years. The levels of both anti-alpha Gal and anti-Neu5Gc IgGs significantly increased one month after BHV implantation. The levels of these IgGs declined thereafter but anti-alpha Gal IgG levels declined significantly faster in control patients compared to BHV recipients. Neu5Gc, anti-Neu5Gc IgG and complement deposition were found in calcified BHVs at much higher levels than in calcified native aortic valves. Moreover, in mice, anti-Neu5Gc antibodies were unable to promote calcium deposition on subcutaneously implanted BHV tissue engineered to lack alpha Gal and Neu5Gc antigens. These results indicate that BHVs manufactured using donor tissues deficient in alpha Gal and Neu5Gc could be less prone to immune-mediated deterioration and have improved durability.In a large cohort of patients who underwent aortic valve replacement, antibody responses to glycans present in bioprosthetic heart valves, notably galactose-alpha 1,3-galactose and N-glycolylneuraminic acid, were implicated in valve calcification and deterioration.

The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration

Tomaso Bottio
Membro del Collaboration Group
;
2022-01-01

Abstract

Bioprosthetic heart valves (BHVs) are commonly used to replace severely diseased heart valves but their susceptibility to structural valve degeneration (SVD) limits their use in young patients. We hypothesized that antibodies against immunogenic glycans present on BHVs, particularly antibodies against the xenoantigens galactose-alpha 1,3-galactose (alpha Gal) and N-glycolylneuraminic acid (Neu5Gc), could mediate their deterioration through calcification. We established a large longitudinal prospective international cohort of patients (n = 1668, 34 +/- 43 months of follow-up (0.1-182); 4,998 blood samples) to investigate the hemodynamics and immune responses associated with BHVs up to 15 years after aortic valve replacement. Early signs of SVD appeared in <5% of BHV recipients within 2 years. The levels of both anti-alpha Gal and anti-Neu5Gc IgGs significantly increased one month after BHV implantation. The levels of these IgGs declined thereafter but anti-alpha Gal IgG levels declined significantly faster in control patients compared to BHV recipients. Neu5Gc, anti-Neu5Gc IgG and complement deposition were found in calcified BHVs at much higher levels than in calcified native aortic valves. Moreover, in mice, anti-Neu5Gc antibodies were unable to promote calcium deposition on subcutaneously implanted BHV tissue engineered to lack alpha Gal and Neu5Gc antigens. These results indicate that BHVs manufactured using donor tissues deficient in alpha Gal and Neu5Gc could be less prone to immune-mediated deterioration and have improved durability.In a large cohort of patients who underwent aortic valve replacement, antibody responses to glycans present in bioprosthetic heart valves, notably galactose-alpha 1,3-galactose and N-glycolylneuraminic acid, were implicated in valve calcification and deterioration.
File in questo prodotto:
File Dimensione Formato  
The role of antibody responses-Nature.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.97 MB
Formato Adobe PDF
5.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/416811
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 43
social impact