Santiaguito, Guatemala, represents one of the best cases of active lava dome complex in the world, producing lava flow effusion, weak explosive activity, and cycles of lava dome extrusion over varying timescales. Since the inception in 1922, it has shown a remarkable constant eruptive activity, characterized by effusion of blocky domes and lava flows punctuated by moderate explosions of gas-and-ash and pyroclastic flows. In this study, we reconstruct the time evolution of discharge rates of Santiaguito across one entire century, from 1922 to 2021, combining, for the more recent activity, new satellite thermal data. By using discrete Fourier transform (DFT) and Morlet wavelet analyses, we identify three fundamental periodicities in subsets of the 1922-2021 time-series: (i) long term (ca. 10 years), (ii) intermediate term (ca. 3.5 years), and (iii) short term (from ca. 1 year to ca. 3 months), which are comparable with those observed at other lava dome eruptions at calc-alkaline volcanoes. Such inferred periodicities provide a powerful tool for the interpretation of the non-linear eruptive behaviour and represent a pivotal benchmark for numerical modelling aimed to reconstruct the dynamics of the magma feeding system based on a time-averaged discharge rate dataset.

Detecting multiscale periodicity from the secular effusive activity at Santiaguito lava dome complex (Guatemala)

Silvia Massaro
;
Roberto Sulpizio;
2022-01-01

Abstract

Santiaguito, Guatemala, represents one of the best cases of active lava dome complex in the world, producing lava flow effusion, weak explosive activity, and cycles of lava dome extrusion over varying timescales. Since the inception in 1922, it has shown a remarkable constant eruptive activity, characterized by effusion of blocky domes and lava flows punctuated by moderate explosions of gas-and-ash and pyroclastic flows. In this study, we reconstruct the time evolution of discharge rates of Santiaguito across one entire century, from 1922 to 2021, combining, for the more recent activity, new satellite thermal data. By using discrete Fourier transform (DFT) and Morlet wavelet analyses, we identify three fundamental periodicities in subsets of the 1922-2021 time-series: (i) long term (ca. 10 years), (ii) intermediate term (ca. 3.5 years), and (iii) short term (from ca. 1 year to ca. 3 months), which are comparable with those observed at other lava dome eruptions at calc-alkaline volcanoes. Such inferred periodicities provide a powerful tool for the interpretation of the non-linear eruptive behaviour and represent a pivotal benchmark for numerical modelling aimed to reconstruct the dynamics of the magma feeding system based on a time-averaged discharge rate dataset.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/416154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact