The assessment of past sea-level positions requires a multidisciplinary approach that involves both scientific and historical humanistic fields. The use of a multidisciplinary approach allows us to obtain reliable information on the relative sea-level position, the determination of which requires the evaluation of the eustatic and steric components as well as an assessment of the vertical ground displacements, such as the isostatic adjustments and tectonic movements. In this context, coastal geoarchaeological markers play a fundamental role since their architectural height (generally defined as functional height) was relative to the sea level at the time of their construction. Thus, a comparison between the current elevation of geoarchaeological structures (or depth in the case they are currently submerged) with their estimated functional height allows us to obtain the relative sea-level variation. In this study, we applied a methodological procedure for the evaluation of the functional height of architectural elements using modern technologies (Terrestrial Laser Scanner and GPS-Real Time Kinematic) and detailed sea-level analysis. The proposed methodology was applied to coastal quarries located along the coast of Bari (Apulia region, southern Italy). The results allowed us to confirm the functional height of the detachment surface reported in the literature and to assess the sea-level position in the fifth and fourth centuries before Christ.

Coastal Quarries as Relative Sea-Level Markers: A Methodological Approach Applied in the Apulia Region (Southern Italy)

Giovanni Scardino;Giovanni Scicchitano;Angela Rizzo
2022-01-01

Abstract

The assessment of past sea-level positions requires a multidisciplinary approach that involves both scientific and historical humanistic fields. The use of a multidisciplinary approach allows us to obtain reliable information on the relative sea-level position, the determination of which requires the evaluation of the eustatic and steric components as well as an assessment of the vertical ground displacements, such as the isostatic adjustments and tectonic movements. In this context, coastal geoarchaeological markers play a fundamental role since their architectural height (generally defined as functional height) was relative to the sea level at the time of their construction. Thus, a comparison between the current elevation of geoarchaeological structures (or depth in the case they are currently submerged) with their estimated functional height allows us to obtain the relative sea-level variation. In this study, we applied a methodological procedure for the evaluation of the functional height of architectural elements using modern technologies (Terrestrial Laser Scanner and GPS-Real Time Kinematic) and detailed sea-level analysis. The proposed methodology was applied to coastal quarries located along the coast of Bari (Apulia region, southern Italy). The results allowed us to confirm the functional height of the detachment surface reported in the literature and to assess the sea-level position in the fifth and fourth centuries before Christ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/414561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact