Let P(z) be a polynomial. We study the equation P(Delta)u = 0 as well as the inequalities P(Delta)u >= 0, and P(Delta)u >= f (u) on the whole Double-struck capital R-n. We prove some Liouville-type results for nonnegative solutions and for solutions having a natural growth condition at infinity.

Liouville-type results for spherical symmetric linear differential operators with constant coefficients

D'Ambrosio, L
;
Jannelli, E
2022-01-01

Abstract

Let P(z) be a polynomial. We study the equation P(Delta)u = 0 as well as the inequalities P(Delta)u >= 0, and P(Delta)u >= f (u) on the whole Double-struck capital R-n. We prove some Liouville-type results for nonnegative solutions and for solutions having a natural growth condition at infinity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact