Let P(z) be a polynomial. We study the equation P(Delta)u = 0 as well as the inequalities P(Delta)u >= 0, and P(Delta)u >= f (u) on the whole Double-struck capital R-n. We prove some Liouville-type results for nonnegative solutions and for solutions having a natural growth condition at infinity.
Liouville-type results for spherical symmetric linear differential operators with constant coefficients
D'Ambrosio, L
;Jannelli, E
2022-01-01
Abstract
Let P(z) be a polynomial. We study the equation P(Delta)u = 0 as well as the inequalities P(Delta)u >= 0, and P(Delta)u >= f (u) on the whole Double-struck capital R-n. We prove some Liouville-type results for nonnegative solutions and for solutions having a natural growth condition at infinity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.