In this work, we consider symmetric positive definite pencils depending on two parameters. That is, we are concerned with the generalized eigenvalue problem (A(x) - lambda B(x)) v = 0, where A and B are symmetric matrix valued functions in R-nxn, smoothly depending on parameters x is an element of Omega subset of R-2; furthermore, B is also positive definite. In general, the eigenvalues of this multiparameter problem will not be smooth, the lack of smoothness resulting from eigenvalues being equal at some parameter values (conical intersections). Our main goal is precisely that of locating parameter values where eigenvalues are equal. We first give general theoretical results for the present generalized eigenvalue problem, and then introduce and implement numerical methods apt at detecting conical intersections. Finally, we perform a numerical study of the statistical properties of coalescing eigenvalues for pencils where A and B are either full or banded, for several bandwidths.

Decompositions and coalescing eigenvalues of symmetric definite pencils depending on parameters

Pugliese, A
2022-01-01

Abstract

In this work, we consider symmetric positive definite pencils depending on two parameters. That is, we are concerned with the generalized eigenvalue problem (A(x) - lambda B(x)) v = 0, where A and B are symmetric matrix valued functions in R-nxn, smoothly depending on parameters x is an element of Omega subset of R-2; furthermore, B is also positive definite. In general, the eigenvalues of this multiparameter problem will not be smooth, the lack of smoothness resulting from eigenvalues being equal at some parameter values (conical intersections). Our main goal is precisely that of locating parameter values where eigenvalues are equal. We first give general theoretical results for the present generalized eigenvalue problem, and then introduce and implement numerical methods apt at detecting conical intersections. Finally, we perform a numerical study of the statistical properties of coalescing eigenvalues for pencils where A and B are either full or banded, for several bandwidths.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact