Biosensors are low-cost and low-maintenance alternatives to conventional analytical techniques for biomedical, industrial and environmental applications. Biosensors based on whole microorganisms can be genetically engineered to attain high sensitivity and specificity for the detection of selected analytes. While bacteria-based biosensors have been extensively reported, there is a recent interest in yeast-based biosensors, combining the microbial with the eukaryotic advantages, including possession of specific receptors, stability and high robustness. Here, we describe recently reported yeast-based biosensors highlighting their biological and technical features together with their status of development, that is, laboratory or prototype. Notably, most yeast-based biosensors are still in the early developmental stage, with only a few prototypes tested for real applications. Open challenges, including systematic use of advanced molecular and biotechnological tools, bioprospecting, and implementation of yeast-based biosensors in electrochemical setup, are discussed to find possible solutions for overcoming bottlenecks and promote real-world application of yeast-based biosensors.

Biological and technical challenges for implementation of yeast‐based biosensors

Ohiemi Benjamin Ocheja
Writing – Original Draft Preparation
;
Enrico Marsili
Writing – Review & Editing
;
Cataldo Guaragnella
Writing – Review & Editing
;
Nicoletta Guaragnella
Writing – Review & Editing
2022-01-01

Abstract

Biosensors are low-cost and low-maintenance alternatives to conventional analytical techniques for biomedical, industrial and environmental applications. Biosensors based on whole microorganisms can be genetically engineered to attain high sensitivity and specificity for the detection of selected analytes. While bacteria-based biosensors have been extensively reported, there is a recent interest in yeast-based biosensors, combining the microbial with the eukaryotic advantages, including possession of specific receptors, stability and high robustness. Here, we describe recently reported yeast-based biosensors highlighting their biological and technical features together with their status of development, that is, laboratory or prototype. Notably, most yeast-based biosensors are still in the early developmental stage, with only a few prototypes tested for real applications. Open challenges, including systematic use of advanced molecular and biotechnological tools, bioprospecting, and implementation of yeast-based biosensors in electrochemical setup, are discussed to find possible solutions for overcoming bottlenecks and promote real-world application of yeast-based biosensors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413715
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact