Change Detection (CD) aims to distinguish surface changes based on bi-temporal remote sensing images. In recent years, deep neural models have made a breakthrough in CD processes. However, training a deep neural model requires a large volume of labelled training samples that are time-consuming and labour-intensive to acquire. With the aim of learning an accurate CD model with limited labelled data, we propose SENECA: a method based on a CD Siamese network, which takes advantage of both Transfer Learning (TL) and Active Learning (AL) to handle the constraint of limited supervision. More precisely, we jointly use AL and TL to adapt a CD model trained on a labelled source domain to a (related) target domain featured by restricted access to labelled data. We report results from an experimental evaluation involving five pairs of images acquired via Sentinel-2 satellites between 2015 and 2018 in various locations picked all over Asia and USA. The results show the beneficial effects of the proposed AL and TL strategies on the accuracy of the decisions made by the CD Siamese network and depict the merit of the proposed approach over competing CD baselines.

SENECA: Change detection in optical imagery using Siamese networks with Active-Transfer Learning

giuseppina andresini
;
annalisa appice;donato malerba
2023-01-01

Abstract

Change Detection (CD) aims to distinguish surface changes based on bi-temporal remote sensing images. In recent years, deep neural models have made a breakthrough in CD processes. However, training a deep neural model requires a large volume of labelled training samples that are time-consuming and labour-intensive to acquire. With the aim of learning an accurate CD model with limited labelled data, we propose SENECA: a method based on a CD Siamese network, which takes advantage of both Transfer Learning (TL) and Active Learning (AL) to handle the constraint of limited supervision. More precisely, we jointly use AL and TL to adapt a CD model trained on a labelled source domain to a (related) target domain featured by restricted access to labelled data. We report results from an experimental evaluation involving five pairs of images acquired via Sentinel-2 satellites between 2015 and 2018 in various locations picked all over Asia and USA. The results show the beneficial effects of the proposed AL and TL strategies on the accuracy of the decisions made by the CD Siamese network and depict the merit of the proposed approach over competing CD baselines.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0957417422021418-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ChangeDetection_AL___SENECA__Copy_.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact