This paper presents a semi-empirical model for mass and heat transfer applied to de-watering and cooling of fresh leafy vegetables. This process aims at optimizing vegetables’ moisture content and temperature through the interaction with conditioned airflows to ensure proper storage and preservation. It is implemented in different modules – i.e., a first set of hot modules with hot air, a second set of cold modules with cold air – allowing to remove water from the vegetables and to achieve the desired temperature. A dedicated transfer model is developed to follow the evolution of the liquid droplets on the leaves during the process. It is based on water mass and energy balances on product and air sides, where the bed of leaves is treated as a porous medium. The mass and heat transfer coefficients are calibrated by comparison with experimental data. The model is validated with real data from the field, and a parametric analysis is implemented to show its potential application to optimize the process. The calibrated model presents satisfactory reliability – less than ±1.0 °C as average error for output temperature – according to the uncertainty of the approaches available in literature, thereby ensuring a robust performance assessment. This can support the process application in several fields of the agri-food industry with significant quality and productivity improvements. Finally, the model can be used to develop digital twins to foster the ongoing digitalization of the agri-food sector with a view to sustainability.

A semi-empirical model for de-watering and cooling of leafy vegetables

Bianco N.;Pantaleo A. M.
Writing – Review & Editing
;
2022-01-01

Abstract

This paper presents a semi-empirical model for mass and heat transfer applied to de-watering and cooling of fresh leafy vegetables. This process aims at optimizing vegetables’ moisture content and temperature through the interaction with conditioned airflows to ensure proper storage and preservation. It is implemented in different modules – i.e., a first set of hot modules with hot air, a second set of cold modules with cold air – allowing to remove water from the vegetables and to achieve the desired temperature. A dedicated transfer model is developed to follow the evolution of the liquid droplets on the leaves during the process. It is based on water mass and energy balances on product and air sides, where the bed of leaves is treated as a porous medium. The mass and heat transfer coefficients are calibrated by comparison with experimental data. The model is validated with real data from the field, and a parametric analysis is implemented to show its potential application to optimize the process. The calibrated model presents satisfactory reliability – less than ±1.0 °C as average error for output temperature – according to the uncertainty of the approaches available in literature, thereby ensuring a robust performance assessment. This can support the process application in several fields of the agri-food industry with significant quality and productivity improvements. Finally, the model can be used to develop digital twins to foster the ongoing digitalization of the agri-food sector with a view to sustainability.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1359431122001892-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 6.88 MB
Formato Adobe PDF
6.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact