One of the dominant species of green algae growing along the Mediterranean coast of Egypt is Ulva lactuca. Pretreatment can have a major effect on biogas production because hydrolysis of the algae cell wall structure is a rate-limiting stage in the anaerobic digestion (AD) process. The use of ozone, a new pretreatment, to boost biogas production from the green algae Ulva lactuca was investigated in this study. Ozonation at various dosages was used in contrast to untreated biomass, and the effect on the performance of subsequent mesophilic AD using two separate inoculums (cow manure and activated sludge) was examined. The findings indicated that, in different studies, ozonation pretreatment showed a substantial increase in biogas yield relative to untreated algae. With an ozone dose of 249 mg O3 g–1 VS algal for Ulva lactuca, the highest biogas output (498.75 mL/g VS) was achieved using cow manure inoculum. The evaluation of FTIR, TGA, SEM, and XRD revealed the impact of O3 on the structure of the algal cell wall and integrity breakage, which was thus established as the main contributor to improving the biogas production.
Enhancement of biogas production from macroalgae ulva latuca via ozonation pretreatment
Pantaleo A.Conceptualization
2021-01-01
Abstract
One of the dominant species of green algae growing along the Mediterranean coast of Egypt is Ulva lactuca. Pretreatment can have a major effect on biogas production because hydrolysis of the algae cell wall structure is a rate-limiting stage in the anaerobic digestion (AD) process. The use of ozone, a new pretreatment, to boost biogas production from the green algae Ulva lactuca was investigated in this study. Ozonation at various dosages was used in contrast to untreated biomass, and the effect on the performance of subsequent mesophilic AD using two separate inoculums (cow manure and activated sludge) was examined. The findings indicated that, in different studies, ozonation pretreatment showed a substantial increase in biogas yield relative to untreated algae. With an ozone dose of 249 mg O3 g–1 VS algal for Ulva lactuca, the highest biogas output (498.75 mL/g VS) was achieved using cow manure inoculum. The evaluation of FTIR, TGA, SEM, and XRD revealed the impact of O3 on the structure of the algal cell wall and integrity breakage, which was thus established as the main contributor to improving the biogas production.File | Dimensione | Formato | |
---|---|---|---|
energies-14-01703.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
24.97 MB
Formato
Adobe PDF
|
24.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.