We consider the virtual element discretization of the Navier Stokes equations coupled with the heat equation where the viscosity depends on the temperature. We present the virtual element discretization of the coupled problem, show its well-posedness and prove optimal error estimates. Numerical experiments that confirm the theoretical error bounds are also presented.

Virtual element method for the Navier–Stokes equation coupled with the heat equation

Vacca, Giuseppe
;
2023-01-01

Abstract

We consider the virtual element discretization of the Navier Stokes equations coupled with the heat equation where the viscosity depends on the temperature. We present the virtual element discretization of the coupled problem, show its well-posedness and prove optimal error estimates. Numerical experiments that confirm the theoretical error bounds are also presented.
File in questo prodotto:
File Dimensione Formato  
2023-Antonietti_Vacca_Verani-IMAJNA.pdf

non disponibili

Descrizione: Version of Record
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
VEM_Stokes_coupled.pdf

accesso aperto

Descrizione: Documento in Post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 17.97 MB
Formato Adobe PDF
17.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact