Many factors may influence the risk of being infected by SARS-CoV-2, the coronavirus responsible for coronavirus disease 2019 (COVID-19). Exposure to the virus cannot explain the variety of an individual’s responses to the virus and the high differences of effect that the virus may cause to some. While a person’s preexisting condition and their immune defenses have been confirmed to play a major role in the disease progression, there is still much to learn about hosts’ genetic makeup towards COVID-19 susceptibility and risk. The host genetic makeup may have direct influence on the grade of predisposition and outcomes of COVID-19. In this study, we aimed to investigate the presence of relevant genetic single nucleotide polymorphisms (SNPs), the peripheral blood level of IL6, vitamin D and arterial blood gas (ABG) markers (pH, oxygen-SpO2 and carbon dioxide-SpCO2) on two groups, COVID-19 (n = 41, study), and the healthy (n = 43, control). We analyzed cytokine and interleukin genes in charge of both pro-inflammatory and immune-modulating responses and those genes that are considered involved in the COVID-19 progression and complications. Thus, we selected major genes, such as IL1β, IL1RN (IL-1 β and α receptor) IL6, IL6R (IL-6 receptor), IL10, IFNγ (interferon gamma), TNFα (tumor necrosis factor alpha), ACE2 (angiotensin converting enzyme), SERPINA3 (Alpha-1-Antiproteinase, Antitrypsin member of Serpin 3 family), VDR (vitamin D receptor Tak1, Bsm1 and Fok1), and CRP (c-reactive protein). Though more research is needed, these findings may give a better representation of virus pleiotropic activity and its relation to the immune system.

Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection

Dipalma, Gianna;Bianco, Angelica;Inchingolo, Francesco;
2022-01-01

Abstract

Many factors may influence the risk of being infected by SARS-CoV-2, the coronavirus responsible for coronavirus disease 2019 (COVID-19). Exposure to the virus cannot explain the variety of an individual’s responses to the virus and the high differences of effect that the virus may cause to some. While a person’s preexisting condition and their immune defenses have been confirmed to play a major role in the disease progression, there is still much to learn about hosts’ genetic makeup towards COVID-19 susceptibility and risk. The host genetic makeup may have direct influence on the grade of predisposition and outcomes of COVID-19. In this study, we aimed to investigate the presence of relevant genetic single nucleotide polymorphisms (SNPs), the peripheral blood level of IL6, vitamin D and arterial blood gas (ABG) markers (pH, oxygen-SpO2 and carbon dioxide-SpCO2) on two groups, COVID-19 (n = 41, study), and the healthy (n = 43, control). We analyzed cytokine and interleukin genes in charge of both pro-inflammatory and immune-modulating responses and those genes that are considered involved in the COVID-19 progression and complications. Thus, we selected major genes, such as IL1β, IL1RN (IL-1 β and α receptor) IL6, IL6R (IL-6 receptor), IL10, IFNγ (interferon gamma), TNFα (tumor necrosis factor alpha), ACE2 (angiotensin converting enzyme), SERPINA3 (Alpha-1-Antiproteinase, Antitrypsin member of Serpin 3 family), VDR (vitamin D receptor Tak1, Bsm1 and Fok1), and CRP (c-reactive protein). Though more research is needed, these findings may give a better representation of virus pleiotropic activity and its relation to the immune system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact