Active fluids are intrinsically out-of-equilibrium systems due to the internal energy injection of the active constituents. We show here that a transition from a motion-less isotropic state towards a flowing polar one can be possibly driven by the sole active injection through the action of polar-hydrodynamic interactions in absence of an ad hoc free energy which favors the development of an ordered phase. In particular, we propose an analytical argument and we perform lattice Boltzmann simulations where the appearance of large temporal fluctuations in the polar fraction of the system is observed at the transition point. We show that elastic absorption plays a relevant role in energy transfer dynamics, contrary to the case of the usual active gel theory where this term can be factually neglected. Copyright (C) 2021 EPLA

Activity-induced isotropic-polar transition in active liquid crystals

Giordano, MG;Carenza, LN;Gonnella, G;Negro, G
2021-01-01

Abstract

Active fluids are intrinsically out-of-equilibrium systems due to the internal energy injection of the active constituents. We show here that a transition from a motion-less isotropic state towards a flowing polar one can be possibly driven by the sole active injection through the action of polar-hydrodynamic interactions in absence of an ad hoc free energy which favors the development of an ordered phase. In particular, we propose an analytical argument and we perform lattice Boltzmann simulations where the appearance of large temporal fluctuations in the polar fraction of the system is observed at the transition point. We show that elastic absorption plays a relevant role in energy transfer dynamics, contrary to the case of the usual active gel theory where this term can be factually neglected. Copyright (C) 2021 EPLA
File in questo prodotto:
File Dimensione Formato  
epl_133_58004_2021_giordano_carenza_bonelli_gonnella_negro.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2010.14124v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 8.09 MB
Formato Adobe PDF
8.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/413091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact