We study numerically the role of hydrodynamics in the liquid-hexatic transition of active colloids at intermediate activity, where motility induced phase separation (MIPS) does not occur. We show that in the case of active Brownian particles (ABP), the critical density of the transition decreases upon increasing the particle's mass, enhancing ordering, while self-propulsion has the opposite effect in the activity regime considered. Active hydrodynamic particles (AHP), instead, undergo the liquid-hexatic transition at higher values of packing fraction phi than the corresponding ABP, suggesting that hydrodynamics have the net effect of disordering the system. At increasing densities, close to the hexatic-liquid transition, we found in the case of AHP the appearance of self-sustained organized motion with clusters of particles moving coherently.
Hydrodynamic effects on the liquid-hexatic transition of active colloids
Gonnella, G;Suma, A
2022-01-01
Abstract
We study numerically the role of hydrodynamics in the liquid-hexatic transition of active colloids at intermediate activity, where motility induced phase separation (MIPS) does not occur. We show that in the case of active Brownian particles (ABP), the critical density of the transition decreases upon increasing the particle's mass, enhancing ordering, while self-propulsion has the opposite effect in the activity regime considered. Active hydrodynamic particles (AHP), instead, undergo the liquid-hexatic transition at higher values of packing fraction phi than the corresponding ABP, suggesting that hydrodynamics have the net effect of disordering the system. At increasing densities, close to the hexatic-liquid transition, we found in the case of AHP the appearance of self-sustained organized motion with clusters of particles moving coherently.File | Dimensione | Formato | |
---|---|---|---|
epje_2022_negro_gonnella_suma_lamura_caporusso.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.