In this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) have been studied and compared for the treatment of raw urban wastewater. In the hybrid CWs, the first stage was a mulch-based horizontal subsurface flow CW and the second stage was a vertical subsurface flow CW (VF CW). The VF CWs were used to determine if sand could improve the performance of the hybrid CW with respect to the mulch. In the multistage HFs, mulch, gravel and sand were used as substrates. The effect of water height (HF10: 10 cm vs. HF40: 40 cm) and surface loading rate (SLR: 12 vs. 24 g Chemical Oxygen Demand (COD)/m(2)d) has been studied. The results show that the use of sand in the vertical flow stage of the hybrid CW did not improve the average performance. Additionally, the sand became clogged, while the mulch did not. The effect of water height on average pollutant removal was not determined but HF10 performed better regarding compliance with legal regulations. With a SLR of 12 g COD/m(2)d, removals of HF10 were: 79% for COD, 75% for NH4+-N, 53% for dissolved molybdate-reactive phosphate-P (DRP), 99% for turbidity and 99.998% forE. coliand total coliforms. When SLR was doubled, removals decreased for NH4+-N: 49%, DRP: -20%, E coli and total coliforms: 99.5-99.9%, but not for COD (85%) and turbidity (99%). Considering the obtained results and the simplicity of the construction and operation of HFs, HF10 would be the most suitable choice for the treatment of raw urban wastewater without clogging problems.
Multistage Horizontal Subsurface Flow vs. Hybrid Constructed Wetlands for the Treatment of Raw Urban Wastewater
Ezio Ranieri
2020-01-01
Abstract
In this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) have been studied and compared for the treatment of raw urban wastewater. In the hybrid CWs, the first stage was a mulch-based horizontal subsurface flow CW and the second stage was a vertical subsurface flow CW (VF CW). The VF CWs were used to determine if sand could improve the performance of the hybrid CW with respect to the mulch. In the multistage HFs, mulch, gravel and sand were used as substrates. The effect of water height (HF10: 10 cm vs. HF40: 40 cm) and surface loading rate (SLR: 12 vs. 24 g Chemical Oxygen Demand (COD)/m(2)d) has been studied. The results show that the use of sand in the vertical flow stage of the hybrid CW did not improve the average performance. Additionally, the sand became clogged, while the mulch did not. The effect of water height on average pollutant removal was not determined but HF10 performed better regarding compliance with legal regulations. With a SLR of 12 g COD/m(2)d, removals of HF10 were: 79% for COD, 75% for NH4+-N, 53% for dissolved molybdate-reactive phosphate-P (DRP), 99% for turbidity and 99.998% forE. coliand total coliforms. When SLR was doubled, removals decreased for NH4+-N: 49%, DRP: -20%, E coli and total coliforms: 99.5-99.9%, but not for COD (85%) and turbidity (99%). Considering the obtained results and the simplicity of the construction and operation of HFs, HF10 would be the most suitable choice for the treatment of raw urban wastewater without clogging problems.File | Dimensione | Formato | |
---|---|---|---|
sustainibility 2020 Ranieri Herrera .pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.