We investigate the existence of solutions of the ${(p,q)-}$quasilinear elliptic problem \[\left\{\begin{array}{lll} \displaystyle{ -\Delta_p u -\Delta_q u\ =\ g(x, u) + \varepsilon\, h(x,u)} & & \mbox{ in } \Omega,\\ \displaystyle{u=0} & & \mbox{ on } \partial\Omega,\\ \end{array}\right.\] where $\Omega$ is an open bounded domain in $\R^N$, $1<+\infty$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$, $\varepsilon\in\R$ and $h\in C(\overline\Omega\times\R,\R)$. In spite of the possible lack of a variational structure of this problem, appropriate procedures and estimates allow us to prove the existence of at least one nontrivial solution for small perturbations.
An existence result for perturbed (p,q)-quasilinear elliptic problems
Candela Anna Maria;Salvatore Addolorata
2023-01-01
Abstract
We investigate the existence of solutions of the ${(p,q)-}$quasilinear elliptic problem \[\left\{\begin{array}{lll} \displaystyle{ -\Delta_p u -\Delta_q u\ =\ g(x, u) + \varepsilon\, h(x,u)} & & \mbox{ in } \Omega,\\ \displaystyle{u=0} & & \mbox{ on } \partial\Omega,\\ \end{array}\right.\] where $\Omega$ is an open bounded domain in $\R^N$, $1<+\infty$, the nonlinearity $g(x,u)$ behaves at infinity as $|u|^{q-1}$, $\varepsilon\in\R$ and $h\in C(\overline\Omega\times\R,\R)$. In spite of the possible lack of a variational structure of this problem, appropriate procedures and estimates allow us to prove the existence of at least one nontrivial solution for small perturbations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.